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Abstract. Human beings like to believe they are in control of their destiny. This ubiquitous trait seems
to increase motivation and persistence, and is probably evolutionarily adaptive [J.D. Taylor, S.E. Brown,
Psych. Bull. 103, 193 (1988); A. Bandura, Self-efficacy: the exercise of control (WH Freeman, New York,
1997)]. But how good really is our ability to control? How successful is our track record in these areas? There
is little understanding of when and under what circumstances we may over-estimate [E. Langer, J. Pers. Soc.
Psych. 7, 185 (1975)] or even lose our ability to control and optimize outcomes, especially when they are
the result of aggregations of individual optimization processes. Here, we demonstrate analytically using the
theory of Markov Chains and by numerical simulations in two classes of games, the Time-Horizon Minority
Game [M.L. Hart, P. Jefferies, N.F. Johnson, Phys. A 311, 275 (2002)] and the Parrondo Game [J.M.R.
Parrondo, G.P. Harmer, D. Abbott, Phys. Rev. Lett. 85, 5226 (2000); J.M.R. Parrondo, How to cheat a
bad mathematician (ISI, Italy, 1996)], that agents who optimize their strategy based on past information
may actually perform worse than non-optimizing agents. In other words, low-entropy (more informative)
strategies under-perform high-entropy (or random) strategies. This provides a precise definition of the
“illusion of control” in certain set-ups a priori defined to emphasize the importance of optimization.

PACS. 89.75.-k Complex systems – 89.65.Gh Economics; econophysics, financial markets, business and
management – 02.50.Le Decision theory and game theory

1 Introduction

The success of science and technology, with the develop-
ment of ever more sophisticated computerized integrated
sensors in the biological, environmental and social sci-
ences, all illustrate the quest for control as a universal en-
deavor. The exercise of governmental authority, the man-
aging of the economy, the regulation of financial markets,
the management of corporations, and the attempt to mas-
ter natural resources, control natural forces and influence
environmental factors all arise from this quest. Langer’s
phrase, “illusion of control” [3] describes the fact that in-
dividuals appear hard-wired to over-attribute success to
skill, and to underestimate the role of chance, when both
are in fact present. Whether control is genuine or merely
perceived is a prevalent question in psychological theories.
The following presents two rigorously controlled mathe-
matical set-ups demonstrating generic circumstances in
which optimizing agents perform worse than their non-
optimized strategies, or than non-optimizing or random
agents.
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2 Minority Games

2.1 Definition and summary of main results
for the Time-Horizon MG (THMG)

We first study a variant of Minority games (MGs), which
constitute a sub-class of market-entry games. MGs ex-
emplify situations in which the “rational expectations”
mechanism of standard economic theory fails. This mech-
anism in effect asks, “what expectation model would lead
to collective actions that would on average validate the
model, assuming everyone adopted it?” [10]. In minor-
ity games, a large number of interacting decision-making
agents, each aiming for personal gain in an artificial uni-
verse with scarce resources, try to anticipate the ac-
tions of others on the basis of incomplete information.
Those who subsequently find themselves in the minority
group gain. Therefore, expectations that are held in com-
mon negate themselves, leading to anti-persistent behavior
both for the aggregate behavior and for individuals. Mi-
nority games have been much studied as repeated games
with expectation indeterminacy, multiple equilibria and
inductive optimization behavior.

Consider the Time-Horizon MG (THMG), where N
players have to choose one out of two alternatives at each
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time step based on information represented as a binary
time series A(t). Those who happen to be in the minority
win. Each agent is endowed with S strategies. Each strat-
egy gives a prediction for the next outcome A(t) based
on the history of the last m realizations A(t − 1), . . . ,
A(t−m) (m is called the memory size of the agents). Each
agent holds the same number S of (in general different)
strategies among the 22m

total number of strategies. The
S strategies of each agent are chosen at random once and
for all at the beginning of the game. At each time t, in the
absence of better information, in order to decide between
the two alternatives for A(t), each agent uses her most suc-
cessful strategy in terms of payoff accumulated in a rolling
window of finite length τ up to the last information avail-
able at the present time t (the case of a limitlessly growing
τ corresponds to the standard MG; the term “Time Hori-
zon MG” refers to the case of a fixed and finite τ). This
is the key optimization step. If her best strategy predicts
A(t) = +1 (resp. −1), she will take the action ai(t) = −1
(resp. +1). The aggregate behavior A(t) = ΣN

i=1 ai(t) is
then added to the information set available for the next
iteration at time t + 1. The corresponding instantaneous
payoff of agent i is given by −sign[ai(t)A(t)] (and simi-
larly for each strategy for which it is added to the τ − 1
previous payoffs). As the name of the game indicates, if a
strategy is in the minority (ai(t)A(t) < 0), it is rewarded.
In other words, agents in THMG try to be anti-imitative.
The richness and complexity of minority games stem from
the fact that agents strive to be different. Previous inves-
tigations have shown the existence of a phase transition
marked by agent cooperation and efficiency between an
inefficient regime (worse than random) and a random-like
regime as the control parameter α ≡ 2m/N is increased: in
the vicinity of the phase transition at αc = 2mc/N ≈ 0.34
(for both the THMG and MG proper), the size of the fluc-
tuations of A(t) (as measured by its normalized variance
σ2/N) falls below the random coin-toss limit for large m’s
(assuming fixed N) when agents always use their highest
scoring strategy [6]. In other words, for a range of m (given
N , S), agent performance is better than what strategy
performance would be in a game with no agents optimiz-
ing. The phenomenon discussed here is that when opti-
mizing, and averaged over all actual agents and strategies
in a given realization, agents in the TH variant of the MG
nonetheless generally underperform the mean of their own
measured strategy performance and do so in all phases for
reasonable lengths of τ (as also the mean over all strate-
gies in a given realization. For any given realization, how-
ever, a minority of agents outperform their strategies and
the majority of other agents. Some may also achieve net
positive gain, if rarely.). In the MG proper, however, τ is
unbounded and a stationary state is reached at some very
large τeq ≥ 2m × 200 where a subset of agents “freeze”
their choice of strategy: one virtual strategy score attains
a permanently higher value than any other. These frozen
agents in general do outperform the mean of all strate-
gies in a given realization as well as the mean of their
own S original strategies: they perform precisely as well
as their best. We focus on results in the THMG with an

eye towards real-world markets in which because the time
series being predicted are non-stationary, trading strate-
gies are weakened if they incorporate an unbounded (and
uniformly-weighted) history of prior strategic success or
failure: remote history is less important than recent his-
tory and beyond a certain point is meaningless. Unless
specifically stated otherwise, throughout this paper, when-
ever we compare agent to strategy performance, we always
mean the performance of agents’ strategies as measured by
the accumulation of hypothetical points averaged over all
agents in the system and the set of all of their strategies.
Furthermore, in selecting a strategy the agents do not take
account of the impact of their choice on the probable mi-
nority state — that is, they do not consider that their
own selection of action reduces the probability that this
action will be the minority one (we refer to such agents as
“standard”).

2.2 Statement of our main results on the “illusion
of control” in the THMG

Our main result may be stated concisely from the per-
spective of utility theory: throughout the space of param-
eters (N , m, S, τ � τeq), the mean payoff of agents’
strategies (as calculated by each agent averaged over all
strategies and agents in a realization) not only surpasses
the mean payoff of supposedly-optimizing agents (aver-
aged over all given agents), but the respective cumulative
distribution functions (CDF) of payoffs show a first-order
stochastic dominance of strategies over agents. Thus, were
the option available to them, agents would behave in a
risk-averse fashion (concave utility function) by switch-
ing randomly between strategies rather than optimizing.
This result generalizes when comparing optimizing agents
with S > 1 strategies with agents having only one strat-
egy (or equivalently S identical strategies), when the sin-
gle strategies are actually implemented. (This takes into
account any difference in strategy performance that may
arise from the simple fact of a strategy actually being de-
ployed). The same result is also found when comparing
optimizing agents with agents flipping randomly among
their S strategies. Agents are supposed to enhance their
performance by choosing adaptively between their avail-
able strategies. In fact, the opposite is true: by our met-
ric, the optimization method would appear to agents as
strictly a method for worsening performance! (In the MG
proper the situation is more complex. As detailed in [6],
agents with two identical strategies — equivalent to hav-
ing only one [and called therein “producers”] — always
have net gain ≤ 0. But this gain may be on average either
greater or less than for agents that optimize among more
than one strategy [called “speculators”]. Which is true de-
pends inter alia on the proportion of producers to specula-
tors: a very small proportion of producers will outperform
speculators. There is an expected proportion of producers
that arises from the average over many different random
possible initial allocations of strategies among agents (i.e.,
quenched disorder). Given this expected mean proportion,
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and averaging over all the agents in each initial allocation,
the mean performance of strategies is better than that of
agents. This is true, however, only when agents do not
choose their strategies at each step taking into account
the impact of that selection.)

Let us restate our result for the THMG in the lan-
guage of a financial market with traders trying to out-
perform the overall market. We argue that in using the
THMG as a model for traders’ actions, the following is
the case: every trader attempting to optimize by selecting
his “best performing strategy” measures that performance
virtually, not by contrast to an imagined setting where all
traders select fixed strategies at random (to whose results
he would have no access anyway). Even though the vir-
tual performances of each of his basket of strategies might
never have been implemented in reality, if he found that
his real performance under a selection process was worse
than the virtual performance of the strategies he had been
selecting among, he would abandon the selection process.
This would be true for most agents and not true only for
a small minority (If every trader were to do the same, of
course, then one would end up with the random or fixed
choice game as discussed below. This forms the usual stan-
dard of comparison for strategy performance in the MG
literature). This resonates with the finding of Doran and
Wright [7], who report that two-thirds of all finance profes-
sors at accredited, four-year universities and colleges in the
US (arguably among the most sophisticated and informed
financial investors) are passive investors who think that
the traditional valuation techniques are all unimportant
in the decision of whether to buy or sell a specific stock
(in particular, the CAPM, APT and Fama and French and
Carhart models).

2.3 Quantitative statement and tests

In the THMG, the “illusion of control” effect is observed
for all N , m, S and τ � τeq . We use the Markov chain
formalism for the THMG [9,11] to obtain the following
theoretical prediction for the gains, ∆WAgent averaged
over all agents and ∆WStrategy averaged over all strate-
gies respectively, of agents and of all strategies in a given
realization [12]:

〈∆WAgent〉 =
1
N

∣
∣
∣ �AD

∣
∣
∣ · �µ (2.1)

〈∆WStrategy〉 =
1

2N
(ŝµ · �κ) · �µ (2.2)

Brackets denote a time average. µ is a (m + τ)-bit “path
history” [9] (sequence of 1-bit states); �µ is the normalized
steady-state probability vector for the history-dependent
(m + τ)(m + τ ) transition matrix T̂, where a given ele-
ment Tµt,µt−1 represents the transition probability that
µt−1 will be followed by µt; �AD is a 2(m+τ)-element vec-
tor listing the particular sum of decided values of A(t) as-
sociated with each path-history; ŝµ is the table of points
accumulated by each strategy for each path-history; �κ is
a 2(m+τ)-element vector listing the total number of times

each strategy is represented in the collection of N agents.
As shown in the supplementary material, T̂ may be de-
rived from �AD, ŝµ and �NU , the number of undecided
agents associated with each path history. Thus agents’
mean gain is determined by the non-stochastic contribu-
tion to A(t) weighted by the probability of the possible
path histories. This is because the stochastic contribution
for each path history is binomially distributed about the
determined contribution. Strategies’ mean gain is deter-
mined by the change in points associated with each strat-
egy over each path-history weighted by the probability of
that path.

We find excellent agreement between the numerical
simulations and the analytical predictions (2.1) and (2.2)
for the THMG. For instance, for m = 2, S = 2, τ = 1 and
N = 31, 〈∆WAgent〉 = −0.22 for both analytic and numer-
ical methods (payoff per time step averaged over time and
over all optimizing agents) compared with 〈∆WStrategy〉 =
−0.06 also (similarly averaged over all strategies) for both
analytic and numerical methods. In this numerical exam-
ple, the average payoff of individual strategies is larger
than for optimizing agents by 0.16 units per time step.
The numerical values of the predictions (2.1) and (2.2)
are obtained by implementing each agent individually as
a coded object.

In the THMG, the mean per-agent per-step pay-
off 〈∆WNon-Opt〉 accrued by non-optimizing agents (they
have only one fixed strategy, or equivalently their S strate-
gies are identical; a.k.a. “producers”) is larger than the
payoff 〈∆WAgent〉 of optimizing agents (a.k.a. “specula-
tors”). In general, this comparative advantage decreases
with their proportion but much less rapidly than in the
MG proper [6]. For example, with m = 2, S = 2, τ = 1
and N = 31, and 2500 random initializations and n opti-
mizing agents, 〈∆WNon-Opt〉−〈∆WAgent〉 = (2.380, 2.270,
2.289, 2.275, 2.145, 2.060, 2.039, 1.994, 1.836, 1.964)×10−3

for n = 1, 2, . . ., 10. More generally, the following order-
ing holds: payoff of individual strategies > payoff of non-
optimizing agents > payoff of optimizing agents. The first
inequality is due to the fact that not all individual strate-
gies are implemented and the theoretical payoff of the non-
implemented strategies does not take into account what
their effect would have been (had they been implemented).
Implementation of a strategy tends to decrease its perfor-
mance (this is similar to the market impact of trading
strategies in financial markets associated with slippage
and market friction). Non-optimizing agents by definition
always implement their strategies. However, the higher
payoff of non-optimizing compared with optimizing agents
shows that the illusion-of-control effect is not due to their
actually being deployed, but is a genuine observable effect.

2.4 Generalizations

The amplitude of the illusion-of-control effect in the
THMG highlights important differences between the MG
proper, in which τ is sufficiently large so as to allow the
system to attain equilibrium with many “frozen” agents
(∼104−106 time steps) and the THMG in which τ is



372 The European Physical Journal B

arguably of a length comparable to real-world invest-
ment “lookbacks”. The effect also highlights the distinc-
tion between optimizing agents with S maximally distinct
strategies (in the sense of Hamming distance) and non-
optimizing agents with S identical strategies — a distinc-
tion with different characteristics in the THMG than in
the MG proper.

It is helpful to generalize the latter distinction by char-
acterizing the degree of similarity between the S strate-
gies of a given agent using the Hamming distance dH

between strategies (the Hamming distance between two
binary strings of equal length is the number of positions
for which the corresponding symbols are different, normal-
ized on the unit interval). Non-optimizing agents with S
identical strategies correspond to dH = 0. In contrast, op-
timizing agents with S maximally distinct strategies have
large dH ’s. Since agents in the THMG with dH = 0 out-
perform agents with large dH , it is natural to ask whether
the ranking of dH could be predictive of the ordering of
agents’ payoffs. But first it is important to clarify differ-
ences with respect to dH in the MG versus the THMG.

The first difference to emphasize is that in the MG,
where the system runs to equilibrium, one of the chief fea-
tures of the stationary state attained is that some (and
sometimes many) of the optimizing agents (with their
strategy dH > 0) “freeze”. That is, the effective τ is long
enough so that one of the S strategies for some agents
will attain permanently the largest number of “virtual”
points. It will then always be deployed, somewhat similar
it might seem, to an agent with S identical strategies from
the start.

The second difference is that at equilibrium in the MG,
the relation between agent performance and dH inverts at
the critical point αc [14]: on average, for α > αc, agents
with larger dH outperform those with smaller dH — and
outperform the mean over the selected strategies. This re-
versal is due to the freezing of a subset of agents. Over
the very long run-up to equilibrium, frozen agents have
the opportunity to choose what is in fact a better strat-
egy. It is unsurprising that a larger Hamming distance
between strategies offers more opportunity for such a dif-
ferentiation to occur. Conversely, for agents with dH = 0,
such selection is impossible.

Note that for extremely short τ (e.g., 1, 10), the phase-
transition does not occur: rather, mean agent performance
increases monotonically and approaches asymptotically
that of mean strategy performance. As τ increases a num-
ber of things happen. First, the phase transition at αc

appears and grows increasingly sharp. Second, the overall
scale of agent return (comparably, volatility of A(t), i.e.,
−σ2/N) as a function of m varies periodically with a pe-
riod equal to 2 × 2m for real histories (but does not vary
for random ones) [12]. Third, so long as τ remains “rea-
sonable”, a reversal of the relation between dH and agent
performance does not occur (i.e., the larger the dH , the
smaller the agent gain in wealth, for all α). “Reasonable”
lengths for τ in the THMG, from the perspective of rela-
tive stationarity in real-world financial time-series, cannot
be denoted without taking into account the regime: for a

Fig. 1. Typical distribution of agent returns by Hamming dis-
tance between component strategies. A simple linear fit with
slope θ (t) = −0.061 demonstrates decreasing mean agent per-
formance with increasing dH ; the time-horizon τ = 2570 is
even longer than “reasonable”; it is more than long enough for
a sharp phase transition to be present at 3 ≤ m ≤ 4 (but still
well short of equilibrium, i.e., τ < τeq � 12 800); the memory
m = 6 is well past the phase transition after which in the MG
proper the relation between dH and ∆Wagent inverts.

modest number of agents (e.g., 31) at small m (e.g., for
N = 31, m < 4), 200× 2m time-steps is sufficient to reach
equilibrium. But near the phase transition, many more
steps are required, on the order of 5000 × 2m ≥ 80 000,
equivalent to 320 years of daily price data, assuming that
a time step equals one trading day. For τ on the order
of 1000, no reversal of the relation between small dH and
better agent performance occurs. Figure 1 provides a typ-
ical example of the distribution of agent returns by dH . A
similar distribution with negative linear slope occurs for
all reasonable values of m and τ short of τeq.

A non-zero dH implies that there are at least two
strategies among the S strategies of the agent which are
different. But, if dH is small, the small difference between
the S strategies makes the optimization only faintly rel-
evant and one can expect to observe a payoff similar to
that of non-optimizing agents, therefore larger than for
optimizing agents with large dH ’s. This intuition is indeed
confirmed by our calculations: the payoff per time step av-
eraged over all agents is a decreasing function of dH , as
originally discussed in [13,14] for the MG at equilibrium
(and for α < αc).

The illusion-of-control effect suggests that the initial
set-up of the THMG in terms of S fixed strategies per
agent is evolutionarily unstable (when agents do not se-
lect strategies taking account of their impact). It is thus
important to ask what happens when agents are allowed
to replace strategies over time based on performance. A
number of authors have investigated this issue in the
MG, adding a variety of longer-term learning mechanisms
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on top of the short-term adaptation that constitutes the
basic MG [14–20]. Inter alia, reference [16] demonstrates
that if agents are allowed to replace strategies over time
based on performance, they do so by ridding themselves of
those composed of the more widely Hamming-distant tu-
ples. Agents that start out composed of identical strategies
do not change at all; those composed of strategies close in
Hamming space change little. Similarly, the authors of [15]
explicitly fixed agents with tuples of identical strategies
and found they performed best. Another important find-
ing in [15] is that the best performance attainable is equiv-
alent to that obtained by agents choosing their strategies
at random. Note that learning only confers a relative ad-
vantage. In general, agents that learn out-perform agents
that don’t. This is certainly true for this privileged subset
of agents among standard ones. But the performance of
learning agents approaches a maximum most closely at-
tained by agents where the Hamming distance between
strategies is 0. These agents neither adapt (optimize) nor
learn. One might say that when learning is introduced,
the system learns to rid itself of the illusory optimization
method that has been hampering it. (Note that if one com-
pares optimizing agents’ performance to the performance
of a separate system composed entirely of non-optimizing
agents, there are regimes in m for which the optimizing
agents do better: the standard metric of comparison in
the MG literature. This could arise “in reality” only if
traders deliberately ignored the evidence most perceive,
namely, that the mean of their own strategies appear to
be outperforming the optimization process that chooses
deliberately among them. We emphasize “most” here, be-
cause a smaller proportion of traders’ would in fact see
their optimization process succeeding. Again, mean agent
performance underperforms mean strategy performance
when averaged over all agents and all of the strategies
represented in a given quenched disorder.)

There are exceptions, of course. Carefully designed
privileges and certain kinds of learning can yield supe-
rior results for a subset of agents, and occasionally for all
agents. But the routine outcome is that both optimization
and straightforward learning cannot improve on simple
chance, as measured by agents’ own assessment of their
strategies’ respective virtual performance. The fact that
the optimization method employed in the THMG yields
the opposite of the intended consequence, and that learn-
ing eliminates the method, leads to an important ques-
tion. We pose it carefully so as to avoid introducing either
privileged agents or learning: is the illusion-of-control so
powerful in this instance that inverting the optimization
rule could yield equally unanticipated and opposite re-
sults? The answer is yes: if the fundamental optimization
rule of the MG is symmetrically inverted for a limited sub-
set of agents who choose their worst-performing strategy
instead of their best, those agents systematically outper-
form both their strategies and other agents. They also can
attain positive gain. Thus, the intuitively self-evident con-
trol over outcome proffered by the THMG “optimization”
strategy is most strikingly shown to be an illusion. Even
learning and evolutionary strategies generally at best rid

the system of any optimization method altogether. They
do not attain the kind of results obtained simply by al-
lowing some agents to reverse the method altogether. We
discuss elsewhere the phenomena that arise as the pro-
portion of agents choosing their best performing strategy
and of agents choosing their worst performing strategy
are varied for different parameters of the THMG and MG
proper. We emphasize the fact that extensive numerical
studies confirm that the phenomenon here indicated per-
sist over a very wide range of parameters in the MG and
over all parameter values in the THMG. Hence, having a
portfolio of S strategies to choose from is in the THMG
always counter-productive, and in the MG often so: diver-
sification + optimization performs on average worse than
a single fixed strategy.

Let us also mention briefly a related work by Menche
and de Almeida. In the standard MG, the only public
information are recent first places, while Menche and de
Almeida [22] introduce a history of second places in the
agents’ set of strategies, thus providing more information
to the agents about the state of the game and about the
quality of their strategies. They find that the resulting
performance of the system becomes significantly better
and the phase transition into the uncorrelated phase is
strongly suppressed. Note that this variation grants agents
greater computational capacity than agents in the stan-
dard MG. For S = 2 it comes close to the simple variation
we explore, where some agents choose their worst strategy
instead of their best without changing the computational
complexity of the game nor of individual agents.

2.5 Illusion of control and the crowding-out
mechanism

Intuitively, the illusion-of-control effect in MG results from
the fact that a strategy that has performed well in the past
becomes crowded out in the future due to the minority
mechanism: performing well in the recent past, there is a
larger probability for a strategy to be chosen by an increas-
ing number of agents, which inevitably leads to its demise.
This argument in fact also applies to all the strategies that
belong to the same reduced set; their number is 22m

/2m,
equal to the ratio of the cardinality of the set of all strate-
gies to the cardinality of the set of reduced strategies.
Thus, the crowding mechanism operates from the fact that
a significant number of agents have at least one strategy in
the same reduced subset among the 2m reduced strategy
subsets. Optimizing agents tend on average to adapt to
the past but not the present. They choose an action a(t)
which is on average out-of-phase with the collective action
A(t). In contrast, non-optimizing agents average over all
the regimes for which their strategy may be good and bad,
and do not face the crowding-out effect. The crowding-
out effect also explains simply why anti-optimizing agents
over-perform: choosing their worst strategy ensures that
it will be the least used by other agents in the next time
step, which implies that they will be in the minority. The
crowding mechanism also predicts that the smaller the
parameter 2m/N , the larger the illusion-of-control effect.
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Indeed, as one considers larger and larger values of 2m/N ,
it becomes more and more probable that agents have their
strategies in different reduced strategy classes, so that a
strategy which is best for an agent tells nothing about the
strategies used by the other agents, and the crowding out
mechanism does not operate. Thus, regions of successful
optimization, if they occur at all, are more likely at higher
values of 2m/N (see Appendix A for further details).

2.6 Robustness of the “illusion of control”
phenomenon: THMG versus MG

It could be argued that the phenomenon of “illusion of
control” that we report is very specific because we con-
sider the THMG, and not the standard MG. In the stan-
dard MG, some agents are frozen as a result of lengthy
optimization, so that some of these agents are able to win
more than half of the time. This appears similar to the ref-
erences we discuss wherein learning takes place and agents
learn to “rid” themselves of strategy choice. But in the MG
proper the “ridding” takes place at the more fundamen-
tal level of the basic optimization procedure and reflects a
genuine (non-illusory) control that appears along with the
phase transition (requiring an especially lengthy run-up to
equilibrium). That some agents are able to win more than
half the time when they are frozen is only in part anal-
ogous to when there exists a subset of select agents —
for example ones that take into account their impact; or
agents with two identical strategies (equivalent therefore
to being frozen from the start, albeit without any preced-
ing selection process); or agents that choose their worst
strategy. From one perspective, the existence of genuine
control in certain phases of the MG proper is an artefact
of an “unreasonably” long equilibration process (and an
equilibrium state arguably not found in real-world mar-
kets). From the opposite perspective, the illusion of con-
trol in the THMG is an artefact of “transients” relatively
early in the system’s equilibration process.

In any event, we observe that in the THMG, agents
with two identical strategies on average outperform those
selecting among strategies, but do not do better than a 0.5
win rate — again, averaged over all those that do in fact
do better than 0.5 and those that don’t. We also observe
that agents that always choose their worst strategy (when
they are a subset among a majority that choose their best
as usual) have a better than 0.5 win rate on average for a
number of parameter values. As detailed in [6,22], when all
agents take into account their impact, the agents do now
outperform their strategies. However, the game settles into
a Nash equilibrium [24] which is arguably an entirely dif-
ferent situation, one in which the “illusion” of control is
no longer pertinent as the dynamics are in this case de-
terministic. (A more realistic situation occurs when, for
example, only some traders account correctly for impact,
or when some or all account for impact only imperfectly.
Depending on the extent of impact-accounting, the sys-
tem may remain frustrated but the illusion of control may
still disappear.)

Any agent accounting for impact looks back at the
prior vote imbalance and determines what the imbalance
would have been had she used each given strategy (not
what its score would have been using just the strategy she
actually did use). Similar methods are used by real-world
traders taking positions large enough to have an impact
on price. A consequence of taking into account impact
is that, with a certain probability usually smaller than
one, at any time-step, an agent will select some strategy
other than the “best” (i.e., as computed in the standard
way). From this perspective, accounting for impact is sim-
ilar (but not identical) to the computationally simpler act
of standard agents in fact choosing other than the best
strategy, always. For S = 2, this is the same as choos-
ing the worst. Although we have reported on the effect
of choosing the worst strategy for S = 2, the same prin-
ciple holds for S > 2: a subset of agents choosing their
worst strategy outperforms, on average, those that choose
their next-to-worst, etc. When a small subset of agents
take into account their impact, on average these perform
better than those that do not. However, they do not per-
form as well as a similarly sized subset of agents choosing
their worst strategy. The dynamics of a game composed
entirely of agents choosing their worst strategy is not sim-
ilar to the Nash-equilibrated structure of a game with all
agents accounting for impact.

It is true in particular that there is a complex rela-
tion between maximum/minimum typical system fluctua-
tion/cooperation and length of strategy score memory (τ),
which we do not discuss in detail: σ2/N is periodic in
2 × 2m [12]. Nonetheless, as many simulations that we
have performed illustrate for both real and random histo-
ries (they are available from the authors upon request), the
underperformance of standard agents vis-à-vis the mean
of all strategies represented in a given Ω̂, and over many
Ω̂, is found for all τ up to (and greater than) the equilib-
rium number of steps at which point the THMG becomes
equivalent to the MG. The difference between strategy
performance (as we define it) and agent performance de-
clines roughly exponentially with τ but remains positive.
When a critical point is present (sufficiently long τ but
still well short of τc) it reaches its positive minimum at
the critical point. We find that strategy out-performance
is greater for random histories at this point than for real
histories. The phase transition central to the MG is most
evident for τ long and is attenuated for τ short.

Even restricted to the THMG, the phenomena we
are most interested in are essentially as prominent for
τ ≈ 1000, say, as for τ ≈ 1. The rule of thumb for reaching
the stationary state in the standard MG is to iterate for
about 200 × 2m time steps (it takes even more time close
to the critical point αc). Thus, for our simulations with
m = 2, values of τ ≈ 1000 and above probe the stationary
regime of the standard MG and confirm the robustness of
the illusion-of-control effect. It is reasonable to argue that
for real-life trading situations, which are generally non-
stationary, a 100 or 1000 time-unit “look back” is of sig-
nificant interest (Real world τ ’s ≤ 100 are not unusual).
“Look backs” long enough to achieve equilibrium, even
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for only tens of agents in the MG are (at least arguably)
less likely to happen in reality. (On the other hand,
studies that employ tick data may arguably require look-
backs on the order of a MG τc and may be treated as at
equilibrium.) If the subset of such agents taking into ac-
count their impact is large enough to be meaningful (∼1/3
or more), one can see that the performance of these agents
distributes itself as symmetrically as possible around zero.
The remaining agents “perturb” this equilibrium. When
the proportion of agents accounting for impact is large
enough (depending on the other system parameters), the
system as a whole settles into a deterministic equilibrium
and there is no longer a phase transition at critical αc.
This equilibrium is achieved more readily when τ is large
yet need not be too large.

However, in a THMG composed entirely of impact-
accounting agents, with N = 31, S = 2, a near equilib-
rium state is attained for 10 > τ > 100. Also, for τ = 1
or 10, strategies outperform their agents as we have de-
scribed. For τ ≥ 100, the reverse is true. In the MG (with
standard agents that do not account for their impact),
whenever the fluctuations of the global choice are better
than with random ones, the agents perform globally bet-
ter than in a game composed entirely of non-optimising
standard ones. As discussed in [6], which agents perform
best during which phase is highly sensitive to the precise
ratio of “producers” (agents with S identical strategies,
hence non-optimizing) to “speculators” (agents with at
least two different strategies), and to the degree to which
agents have correlated actions as averaged over all his-
tories. Frozen speculators in general perform best of all.
We stress that this is not inconsistent with our observa-
tion that in the aggregate — not examining these “micro-
scopic” differences among types and proportions of agents
— standard agents at all τ nonetheless under-perform the
mean of all strategies in a given quenched disorder aver-
aged over many different such configurations.

2.7 First-entry games and symmetric evolutionary
stable equilibria

The above discussion leads to the conclusion that there is
often a profound clash between optimization on the one
hand and minority payoff on the other hand: an agent who
optimizes identifies her best strategy, but in so doing by
her “introspection”, she somehow knows the fate of the
other agents, that it is probable that the other agents are
also going to choose similar strategies, . . . which leads to
their underperformance since most of them will then be
in the majority. It follows then that an optimizing agent
playing a standard minority game should optimize at a
second order of recursion in order to win: her best strategy
allows her to identify the class of best strategies of others,
which she thus must avoid absolutely to be in the minority
and to win (given that other players are just optimizing
at the first order as in the standard MG). Generalization
to ever more complex optimizing set-ups, in which agents
are aware of prior-level effects up to some finite recursive
level, can in principle be iterated ad infinitum.

Actually, the game theory literature on first-entry
games shows that the resulting equilibria depend on how
agents learn [25]: with reinforcement learning, pure equi-
libria involve considerable coordination on asymmetric
outcomes where some agents enter and some stay out;
learning with stochastic fictitious plays leads to symmetric
equilibria in which agents randomize over the entry deci-
sions. There may even exist asymmetric mixed equilibria,
where some agents adopt pure strategies while others play
mixed strategies. We consider the situation where agents
use a boundless recursion scheme to learn and optimize
their strategy so that the equilibrium corresponds to the
fully symmetric mixed strategies where agents randomize
their choice at each time step with unbiased coin tosses.
Consider a THMG game with N agents total, NR of which
employ such a fully random symmetric choice. The re-
maining NS = N −NR “special” agents (with NR 	 NS)
will all be one of three possible types: agents with S fixed
strategies that choose their best (respectively worst, re-
ferred to above as anti-optimizing) performing strategy to
make the decision at the next step and agents with a single
fixed strategy. Our simulations confirm that these three
types of agents indeed under-perform on average the op-
timal fully symmetric purely random mixed strategies of
the NR agents (see Fig. A.5 of the Appendix). Here, pure
random strategies are obtained as optimal, given the fully
rational fully informed nature of the competing agents.
The particular results are sensitive to which strategies are
available to the special agents and to their proportion.
Their underperformance in general requires averaging over
all possible strategies and S-tuples of strategies. (In the
Appendix, we show sample numerical results for NS = 1.)

3 Parrondo games

We now turn to an entirely different kind of game of the
Parrondo type. In the Parrondo effect (PE) [8], individu-
ally fair or losing games are combined either periodically
or randomly to yield a winning game. That random alter-
nation wins seems especially counterintuitive. The PE was
originally conceptualized as the game-theoretic equivalent
of the “flashing ratchet” effect: a charged particle that
executes symmetric Brownian motion in a ratchet-shaped
potential drifts unidirectionally if the potential is flashed
on and off either at random or periodically [26–28]. It
has been proposed as a potential explanation for aspects
of random-walk diffusion [29], diffusion-mediated trans-
port [30], spin systems [31], enzyme synthesis and gene
recombination [32] and to be applied in investment strate-
gies and portfolio optimization [33–35].

3.1 Single-player capital-dependent Parrondo effect

The original Parrondo Effect (PE) combines two “capital-
dependent” games. A single player has (discrete)-time-
dependent capital X(t), t = 0, 1, 2, . . . The time evolution
of X(t) is determined by tossing biased coins. If game A
is played, the player’s capital changes by +1 (“win”) with
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probability p and by −1 (“loss”) with probability 1− p. If
game B is played, the changes are determined by:

Prob. of win Prob. of loss
X (t) /3 ∈ Z p1 1 − p1

X (t) /3 /∈ Z p2 1 − p2

For p = 1/2−ε, p1 = 1/10−ε and p2 = 3/4−ε (ε > 0). If
either game A or game B is played exclusively, they both
lose. In other words, 〈X(t)〉 decreases with t. But if the
games are alternated at random 〈X(t)〉 increases. This is
because the capital-dependent parameter Mod[X(t), M ]
(here with M = 3) can drive the system into a sufficient
frequency of the winning component of game B (e.g., B2)
to cause the PE. Winning by playing losing games is only
a seeming paradox as the possible values of X(t) when
both games are played are not equiprobable. Instead, they
take on values that, for a range of biases in the coins, are
favorable to the player, given the peculiar rules of game B.
(One may also devise probabilities such that both games
are winning, yet the combined game is losing, and so on. A
more general definition of the PE includes such “negative”
effects as well. This is more fully explicated in Appendix B
and in Ref. [36]).

3.2 Single-player history-dependent Parrondo effect

Reference [37] extends the basic PE. Game A remains as
described above (a simple biased coin toss). Game B is
replaced with a history- as opposed to capital-dependent
coin (game) defined by the respective winning/losing
probabilities of four biased coins. A specific bias is associ-
ated with each of the four possible two-step binary histo-
ries (00, 01, 10, 11) of the player’s wins (1) or losses (0).
The choice of coin follows the history dependent rule:

Before Last History Coin Prob. Prob.
last t − 1 (Game) of win of loss
t − 2 at t at t at t

Loss Loss 00 B1 q1 1 − q1

Loss Win 01 B2 q2 1 − q2

Win Loss 10 B3 q3 1 − q3

Win Win 11 B4 q4 1 − q4

Both games A and history-dependent games of type B can
be expressed as Markov transition matrices. But in this
case X(t), the evolution of the capital, is non-Markovian.
To relate the capital to history one may therefore define
the Markov chain

�Y (t) =

(

X (t) − X (t − 1)

X (t − 1) − X (t − 2)

)

(3.1)

with the set of four states {(−1,−1), (−1, +1), (+1,−1),
(+1, +1)} with associated conditional probabilities and
probability state vector {π1(t), π2(t), π3(t), π4(t)} ≡ �π(t).

The transition matrix for game B is therefore

B =

⎛

⎜
⎜
⎜
⎜
⎝

1 − q1 0 1 − q3 0

q1 0 q3 0

0 1 − q2 0 1 − q4

0 q2 0 q4

⎞

⎟
⎟
⎟
⎟
⎠

(3.2)

and �π(t + 1) = B�π(t). The stationary state distribution
�πst obeys

B�πst = �πst (3.3)

with

�πst =
1
N

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(1 − q3) (1 − q4)

(1 − q4) q1

(1 − q4) q1

q1q2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.4)

(N is a normalization factor; we assume a similar set of
equations exists for A, a simple coin-toss).

As explained in reference [37], though game B as a
whole is losing, the values of {q1, q2, q3, q4} in B are
such that B2 and B3 are independently losing, B1 and
B4 winning. Then even if game A is losing (p < 1 − p), it
perturbs the losing cycles of B such that for certain values
of p and {q1, q2, q3, q4} the winning games in B dominate.
This can occur when

(1 − q4) (1 − q3) > q1q2

(2 − q4 − p) (2 − q3 − p) < (q1 + p) (q2 + p) .
(3.5)

For example, in reference [36], p = 1/2 − ε and {q1, q2,
q3, q4} = {9/10 − ε, 1/4 − ε, 1/4 − ε, 7/10 − ε}. Then the
conditions of (3.5) are met when 0 < ε < 1/168.

Reference [38] extends the history-dependent PE fur-
ther by showing that it may arise when game A is redefined
to have the same history-dependent structure as (3.2). A
more complex set of equations define the conditions under
which two losing games of this kind, each with four coins,
generate winning results under random alternation. From
this perspective the simple coin toss form for game A in
reference [37] may be reformulated with a specific set of
parameters that fall within the more general parameter
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space analyzed in reference [38], viz.:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − ( 1
2 − ε

)

0 1 − ( 1
2 − ε

)

0

1
2 − ε 0 1

2 − ε 0

0 1 − ( 1
2 − ε

)

0 1 − ( 1
2 − ε

)

0 1
2 − ε 0 1

2 − ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2 + ε 0 1

2 + ε 0

1
2 − ε 0 1

2 − ε 0

0 1
2 + ε 0 1

2 + ε

0 1
2 − ε 0 1

2 − ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.6)

For ε = 0.005, we obtain the following game matrices:

A =

⎛

⎜
⎜
⎜
⎜
⎝

0.505 0 0.505 0

0.495 0 0.495 0

0 0.505 0 0.505

0 0.495 0 0.495

⎞

⎟
⎟
⎟
⎟
⎠

;

B =

⎛

⎜
⎜
⎜
⎜
⎝

0.105 0 0.755 0

0.895 0 0.245 0

0 0.755 0 0.305

0 0.245 0 0.695

⎞

⎟
⎟
⎟
⎟
⎠

(3.7)

i.e., �π(A) = {0.495, 0.495, 0.495, 0.495} and �π(B) = {0.895,
0.245, 0.245, 0.695}.

Solving the eigenvalue equation (3.3) for B and the
equivalent for A, we obtain the respective steady state
probabilities for the two independent games:

�π
(A)
st =

⎛

⎜
⎜
⎜
⎜
⎝

0.255

0.250

0.250

0.245

⎞

⎟
⎟
⎟
⎟
⎠

; �π
(B)
st =

⎛

⎜
⎜
⎜
⎜
⎝

0.231

0.274

0.274

0.220

⎞

⎟
⎟
⎟
⎟
⎠

(3.8)

and the respective independent probabilities for winning:

Pwin (A) = �π
(A)
st • �π(A) = 0.495

Pwin (B) = �π
(B)
st • �π(B) = 0.494. (3.9)

Naively, one might presume that with a mixing ratio of
1:1, a random alternation of the games would yield a
winning probability equal to the mean of their winning
probabilities, but this is not so, i.e. Pwin(1/2A, 1/2B) �=
1/2[Pwin(A) + Pwin(B)] = 0.4945. Instead, the winning
probability is determined by the probabilities and steady-
state vector of the mean of the transition matrices. As

detailed more generally in Appendix B and reference [36],
the winning probability of a combination of Markovian
transition (game) matrices is not generally equal to the
mean of their independent winning probabilities. Thus:

�π

(
1
2A,

1
2B
)

=
{

1
2 (p1 + q1), 1

2 (p2 + q2), 1
2 (p3 + q3), 1

2 (p4 + q4)
}

=

{0.695, 0.370, 0.370, 0.595} (3.10)

so that

1
2

(A + B) =

⎛

⎜
⎜
⎜
⎜
⎝

0.305 0 0.630 0

0.695 0 0.370 0

0 0.630 0 0.405

0 0.370 0 0.595

⎞

⎟
⎟
⎟
⎟
⎠

(3.11)

and

Pwin

(
1
2A, 1

2B
)

= �π
(
1
2 A,

1
2B)

st • �π(
1
2A,

1
2B) = 0.501. (3.12)

The winning probability is in this instance greater than
either Pwin(A) or Pwin(B).

3.3 Multiple-player capital-dependent Parrondo effect
and its reversal under optimization

Many variants of the PE have been studied, including
capital-dependent multi-player PG (MPPG) [38,39]: At
(every) time-step t, a constant-size subset of all partici-
pants is randomly re-selected actually to play. All partici-
pants keep individual track of their own capital but do not
alternate games independently based on it. Instead, this
data is used to select which game the participants must
use at t. The chosen game is the one which, given the indi-
vidual values of the capital at t− 1 and the known matri-
ces of the two games and their linear convex combination,
has the most positive expected aggregate gain in capital,
summed over all participants. This rule may be thought
of as a static optimization procedure — static in the sense
that the “optimal” choice appears to be known in advance.
It appears exactly quantifiable because of access to each
player’s individual history. If the game is chosen at ran-
dom, the change in wealth averaged over all participants
is significantly positive. But when the “optimization” rule
is employed, the gain becomes a loss significantly greater
than that of either game alone. The intended “optimiza-
tion” scheme actually reverses the positive (collective) PE.
The reversal arises in this way: the “optimization” rule
causes the system to spend much more time playing one
of the games, and individually, any one game is losing.
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3.4 Single-player capital-dependent Parrondo effect
and its reversal under optimization

Here, we present a more natural illustration of the illusion-
of-control in Parrondo games: while the MG is intrinsi-
cally collective, PGs are not. Neither the capital- nor the
history-dependent variations require a collective setting
for the PE to appear. Thus, the effect is most clearly
demonstrated in a single-player implementation with two
games under the most natural kind of optimization rule: at
time t, the player plays whichever game has accumulated
the most points (wealth) over a sliding window of τ prior
time-steps from t− 1 to t− τ . Under this rule, a “current
reversal” (reversal of a positive PE) appears. By construc-
tion, the individual games A and B played individually are
both losing; random alternation between them is winning
(the PE effect), but unexpectedly, choosing the previously
best-performing game yields losses slightly less than either
A or B individually: the PE is almost entirely eliminated.
Furthermore, if instead the previously worst performing
game is chosen, the player does better than either game
and even much better than the PE from random game
choice.

Under the choose-best optimization rule, two matrices
A and B do not form a linear convex sum. Instead, the
combined game is represented by an 8 × 8 transition
matrix M with conditional winning probabilities:

mj =
1
2

{

π
(A)
α(j)

[

1 + π
(A)
β(j) − π

(B)
β(j)

]

+π
(B)
α(j)

[

1 − π
(A)
β(j) + π

(A)
β(j)

]}

j = 1, 2, . . .8. (3.13)

The indices on the individual conditional probabilities for
game A and B, π

(A)
i , πB

i ; i = 1, 2, . . .4 are converted to
indices α(j) and β(j) with j = 1, 2, . . . , 8 by the following:

α (j) = Mod [j − 1, 4] + 1,

β [j] = 1
2 (j − Mod [j − 1, 2] + 1) . (3.14)

For the “choose worst” rule, equation (3.13) is replaced by:

mj =
1
2

{

π
(A)
α(j)

[

1 − π
(A)
β(j) + π

(B)
β(j)

]

+π
(B)
α(j)

[

1 + π
(A)
β(j) − π

(A)
β(j)

]}

j = 1, 2, . . .8. (3.15)

Alternated at random in equal proportion under the
“choose best rule”, P

best(A,B)
win = 0.496, while if “choose

worst” is used, P
worst(A,B)
win = 0.507 (Compare to

Eqs. (3.9) and (3.12)). The mechanism for this illusion-
of-control effect characterized by the reversing of the PE

under optimization is not the same as for the MG, as there
is no collective effect and thus no-crowding out of strate-
gies or games. Instead, the PE results from a distortion of
the steady-state equilibrium distributions �π

(A)
st and �π

(B)
st

into a vector �π
(1/2A,1/2B)
st which is more co-linear to the

conditional winning probability vector �π(1/2A,1/2B) than
in the case of each individual game (this is just a geo-
metric restatement of the fact that the combined game is
winning). One can say that each game alternatively acts at
random so as to better align these two vectors on average
under the action of the other game. Choosing the pre-
viously best performing game amounts to removing this
combined effect, while choosing the previously worst per-
forming game tends to intensify it.

4 Conclusions

We have identified two classes of mechanisms operating
in Minority games and in Parrondo games in which opti-
mizing agents obtain suboptimal outcomes compared with
non-optimizing agents. These examples suggest a general
definition: the “illusion of control” effect occurs when
low-entropy strategies (i.e. which use more information)
under-perform random strategies (with maximal entropy).
The illusion of control effect is related to bounded ratio-
nality as well as limited information [41] since, as we have
shown, unbounded rational agents learn to converge to the
symmetric mixed fully random strategies. It is only in the
presence of bound rationality that agents can stick with
an optimization scheme on a subset of strategies. Our ro-
bust message is that, under bounded rationality, the sim-
ple (large-entropy) strategies are often to be preferred over
more complex elaborated (low-entropy) strategies. This is
a message that should appeal to managers and practition-
ers, who are well-aware in their everyday practice that
simple solutions are preferable to complex ones, in the
presence of the ubiquitous uncertainty.

More examples should be easy to find. For instance,
control algorithms, which employ optimal parameter es-
timation based on past observations, have been shown to
generate broad power law distributions of fluctuations and
of their corresponding corrections in the control process,
suggesting that, in certain situations [42], uncertainty and
risk may be amplified by optimal control. In the same
spirit, more quality control in code development often de-
creases the overall quality which itself spurs more quality
control leading to a vicious circle [43]. In finance, there are
many studies suggesting that most fund managers per-
form worse than random [44] and strong evidence that
over-trading leads to anomalously large financial volatil-
ity [45]. Let us also mention the interesting experiments
in which optimizing humans are found to perform worse
than rats [46]. We conjecture that the illusion-of-control
effect should be widespread in many strategic and opti-
mization games and perhaps in many real life situations.
Our contribution is to put this question at a quantitative
level so that it can be studied rigorously to help formulate
better strategies and tools for management.
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Appendix A: Analytic methods
and simulations for the Minority Game

A.1 The Time-Horizon Minority Game: choosing
the best strategy

In the simplest version of the Minority Game (MG) with
N agents, every agent has S = 2 strategies and m = 2. In
the Time Horizon Minority Game (THMG), the point (or
score) table associated with strategies is not maintained
from the beginning of the game and is not ever growing.
It is a rolling window of finite length τ (in the simplest
case τ = 1). The standard MG reaches an equilibrium
state after a finite number of steps tst. At this point, the
dynamics and the behavior of individual agents for a given
initial quenched disorder in the MG are indistinguishable
from an otherwise identical THMG with τ ≥ tst.

The fundamental result of the MG is generally cast in
terms of system volatility: σ2/N . All variations of agent
and strategy reward functions depend on the negative sign
of the majority vote. Therefore both agent and strategy
“wealth” (points, whether “real” or hypothetical) are in-
verse or negative functions of the volatility: the lower the
value of σ2/N , the greater the mean “wealth” of the “sys-
tem”, i.e., of agents. However, this mean value is only
rarely compared to the equivalent value for the raw strate-
gies of which agents are composed. Yet agents are sup-
posed to enhance their performance by choosing adap-
tively between their available strategies. In fact, the op-
posite is true in the THMG: the optimization method is
strictly a method for worsening performance, not neces-
sarily for every agent, but averaged over all agents and all
strategies in a given Ω̂, averaged over many Ω̂.

To emphasize the relation of the THMG to market-
games and the illusion of optimization, we transform the
fundamental result of the THMG from statements on the
properties of σ2/N to change in wealth, i.e., 〈∆W/∆t〉
for agents and 〈∆W/∆t〉 for strategies. We again use the
simplest possible formulation — if an agent’s actual (or
strategy’s hypothetical) vote places it in the minority, it
scores +1 points, otherwise −1. Formally: at every discrete
time-step t, each agent independently re-selects one of its
S strategies. It “votes” as the selected strategy dictates by
taking one of two “actions,” designated by a binary value:

ai (t) ∈ {1, 0} , ∀ i, t. (A.1)

The state of the system as a whole at time t is a mapping
of the sum of all the agents’ actions to the integer set
{2N1 − N}, where N1 is the number of 1 votes and N0 =
N − N1. This mapping is defined as:

A (t) = 2
N∑

i=1

ai (t) − N = N1 − N0. (A.2)

If A(t) > N
2 , then the minority of agents will have chosen

0 at time t (N0 < N1); if A(t) < N
2 , then the minority

of agents will have chosen 1 at time t (N1 < N0). The
minority choice is the “winning” decision for t. This is
then mapped back to {0, 1}:

Dsys (t) = −sgn [A (t)] ∴ Dsys (t) ∈ {−1, +1} → {0, 1} .
(A.3)

For the MG, binary strings of length m form histories
µ(t), with dim[µ(t)] = m. For the THMG, binary strings
of length m + τ form paths (or “path histories”), with
m + τ = dim(µt), where we define µ(t) as a history in
the standard MG and µt as a path in the THMG. Note
that for memory m, there are 22m

possible strategies from
which agents select S at random. However as first detailed
in reference [5], the space of strategies can be minimally
spanned by a subset of all possible strategies. This re-
duced strategy space [RSS] has dimension 2m+1. As in
reference [11] we may represent this quenched disorder
in the allocation of strategies among agents (from the

RSS) by a dim =
S∏

s=1
2m+1 tensor, Ω̂ (or from the full

strategy space by a dim =
S∏

s=1
22m

tensor). The 2m+1 (or

22m

) strategies are arranged in numerical order along the
edges of Ω̂. Each entry represents the number of agents
with the set of strategies indicated by the element’s po-
sition. Then as demonstrated in [9], any THMG has a
Markov chain formulation. For {m, S, N} = {2, 2, 31} and
using the RSS, the typical initial quenched disorder in
the strategies attributed to each of the N agents is repre-
sented by an 8× 8 matrix Ω̂ and its symmetrized equiva-
lent Ψ̂ = 1/2(Ω̂ + Ω̂T ). Positions along all S edges of Ω̂
represent an ordered listing of all available strategies. The
numerical values Ωij... in Ω̂ indicate the number of times
a specific strategy-tuple has been selected. (E.g., for two
strategies per agent, S = 2, Ω2,5 = 3 means that there
are 3 agents with strategy 2 and strategy 5.) Without loss
of generality, we may express Ω̂ in upper-triangular form
since the order of strategies in an agent has no meaning.
The example (A.4) is a typical such tensor Ω̂ for S = 2,
N = 31

Ω̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 0 0 1 1 0 0

0 0 0 0 3 3 1 1

0 0 2 0 1 0 0 0

0 0 0 1 1 0 0 1

0 0 0 0 1 0 2 1

0 0 0 0 0 2 2 1

0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.4)

Actions are drawn from a reduced strategy space (RSS) of
dimension 2m. Each action is associated with a strategy k
and a path µt. Together they can be represented in table
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form as a dim(RSS)×dim(µt) binary matrix with elements
converted for convenience from {0, 1} → {−1, +1}, i.e.,
aµt

k ∈ {−1, +1}. For m = 2, τ = 1, m + τ = dim(µt) = 3,
there are 23 possible histories and r = 22 reduced strate-
gies (and 2r strategies in total). In this case, the table
of dimension dim(RSS) × dim(µt) coding for all possible
reduced strategies and paths reads:

â ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 −1 −1 −1

−1 −1 +1 +1

−1 +1 −1 +1

−1 +1 +1 −1

+1 −1 −1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 +1 +1 +1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.5)

The change in wealth (point gain or loss) associated with
each of the 2r = 8 strategies for the 8 paths (=allowed
transitions between the 4 histories) at any time t is then:

δ�Sµ(t),µ(t−1) =
(

â
T
)

µ(t)
{2Mod[µ(t − 1), 2] − 1} . (A.6)

Mod[x, y] is “x modulo y”; µ(t) and µ(t − 1) label each of
the 4 histories {00, 01, 10, 11} hence take on one of values
{1, 2, 3, 4}. Equation (A.6) picks out from (A.5) the correct
change in wealth over a single step since the strategies are
ordered in symmetrical sequence.

The change in points associated with each strategy for
each of the allowed transitions between paths µt of the
last τ time steps used to score the strategies is:

�sµt =
τ−1∑

i=0

δ�Sµ(t−i),µ(t−i−1). (A.7)

For example, for m = 2 and τ = 1, the strategy scores are
kept for only a single time-step. There is no summation
so (A.7) in matrix form reduces to the score:

�sµt = δ�Sµ(t),µ(t−1) (A.8)

or, listing the results for all 8 path histories:

ŝµ = δŜ. (A.9)

δŜ is an 8 × 8 matrix that can be read as a lookup table.
It denotes the change in points accumulated over τ = 1
time steps for each of the 8 strategies over each of the
8 path-histories.

Instead of computing A(t), we compute A(µt). Then
for each of the 2m+τ = 8 possible µt, A(µt) is composed
of a subset of wholly determined agent votes and a subset
of undetermined agents whose votes must be determined
by a coin toss:

A (µt) = AD (µt) + AU (µt) . (A.10)

Some agents are undetermined at time t because their
strategies have the same score and the tie has to be broken
with a coin toss. AU (µt) is a random variable characterized
by the binomial distribution. Its actual value varies with
the number of undetermined agents. This number can be
explicated (using an extension to the method employed
in [9]) as:

NU (µt) =
{(

1 −
[

âT
(Mod[µt−1,4]+1) ⊗δ âT

(Mod[µt−1,4]+1)

])

◦ (�sµt ⊗δ �sµt) ◦ Ω̂
}

(Mod[µt−1,2m]+1)

(A.11)

“⊗δ” is a generalized outer product, with the product be-
ing the Kronecker delta. �NU constitutes a vector of such
values. The summed value of all undetermined decisions
for a given µt is distributed binomially. Similarly:

AD (µt) =
(

8∑

r=1

{[

(1 − sgn [�sµt � �sµt ]) ◦ Ψ̂
]

• â
}

r

)

(Mod[µt−1,2m]+1)

(A.12)

Details may also be found in reference [12]. We define �AD

as a vector of the determined contributions to A(t) for
each path µt. In expressions (A.11) and (A.12) µt num-
bers paths from 1 to 8 and is therefore here an index.
�sµt is the “µth

t ” vector of net point gains or losses for
each strategy when at t the system has traversed the path
µt (i.e., it is the “µth

t ” element of the matrix ŝµ = δŜ
in (A.9)). “�” is a generalized outer product of two vec-
tors with subtraction as the product. The two vectors
in this instance are the same, i.e., �sµt . “◦” is Hadamard
(element-by-element) multiplication and “•” the standard
inner product. The index r refers to strategies in the RSS.
Summation over r transforms the base-ten code for µt into
{1, 2, 3, 4, 1, 2, 3, 4}. Selection of the proper number is indi-
cated by the subscript expression on the entire right-hand
side of (A.11). This expression yields an index number,
i.e., selection takes place 1 + Modulo 4 with respect to
the value of (µt − 1).

To obtain the transition matrix for the system as a
whole, we require the 2m+τ ×2m+τ adjacency matrix that
filters out disallowed transitions. Its elements are Γµt,µt−1 :

Γ̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· (A.13)
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Equations (A.11), (A.12) and (A.13) yield the history-
dependent (m + τ ) (m + τ) matrix T̂ with elements
Tµt,µt−1 , representing the 16 allowed probabilities of tran-
sitions between the two sets of 8 path-histories µt and
µt−1:

Tµt,µt−1 = Γµt,µt−1

NU (µt)∑

x=0

{
NU (µt)

C
x

(
1
2

)NU (µt)

× δ
[

sgn (AD (µt) + 2x − NU (µt))

+ (2Mod {µt−1, 2} − 1)
]}

. (A.14)

The C expression
NU (µt)

C
x

(
1
2

)NU (µt) in (A.14) represents

the binomial distribution of undetermined outcomes
under a fair coin-toss with mean = AD (µt). Given a
specific Ω̂,

〈A (µt)〉 = AD (µt) ∀ µt. (A.15)

We now tabulate the number of times each strat-
egy is represented in Ω̂, regardless of coupling (i.e., of
which strategies are associated in forming agent S-tuples):

�κ ≡
2m+τ
∑

k=1

(

Ω̂ + ΩT
)

k
= 2

2m+τ
∑

k=1

Ψ̂k

= {n (σ1) , n (σ2) , . . . n (σ2m+τ )} (A.16)

where σk is the kth strategy in the RSS, Ω̂k, Ω̂T
k and Ψ̂k

are the kth element (vector) in each tensor and n (σk)
represents the number of times σk is present across all
strategy tuples. Therefore

〈∆WAgent〉 = − 1
N

Abs
(

�AD

)

· �µ (A.17)

and

〈∆WStrategy〉 =
1

2N
(ŝµ · �κ) · �µ (A.18)

with �µ the normalized steady-state probability vector for
T̂. Expression (A.17) states that the mean per-step change
in wealth for agents equals −1 times the probability-
weighted sum of the (absolute value of the) determined
vote imbalance associated with a given history. Expres-
sion (A.18) states that the mean per-step change in wealth
for individual strategies equals the probability-weighted
sum of the representation of each strategy (in a given Ω̂)
times the sum over the per-step wealth change associated
with every history. The −1 in (A.17) reflects the minority
rule. I.e., the awarding of points is the negative of the di-
rection of the vote imbalance. No minus sign is required
in (A.18) as it is already accounted for in (A.5).

Fig. A.1. Mean strategy versus agent cumulative change in
wealth in the THMG. {m, S, N} = {2, 2, 31}; 100 time steps.

Fig. A.2. Agent wealth as a function of Hamming distance
between strategy pairs in agents for the example simulation.

Figure A.1 shows the cumulative mean change in
wealth for strategies versus agents over time, given (A.4).

As first studied in [13,14], and discussed in the body
of the manuscript, agent performance is inversely propor-
tional to the Hamming distance between strategies within
agents. With the variation expected of a single example,
our sample Ω̂ given by (A.4) reproduces this relation as
shown in Figure A.2. The mean over many Ω̂ corresponds
to a “flat” Ω̂.

A.2 The Minority Game: choosing the worst strategy

First, we re-cast the initial quenched disorder on the set
of strategies attributed to the N agents in a given game
realization as a two-component tensor Ω̂ = {Ω̂+, Ω̂−}.
Ω̂+ represents standard (S) agents that adapt as be-
fore; Ω̂− represents “counteradaptive” (C) agents that in-
stead select their worst-performing strategies. In our ex-
ample (A.4) then, suppose we select at random 3 agents
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Table A.1. Numerical/analytic results of THMG with and
without 3 C Agents 28 S Agents (=left value/right value).

〈∆WAgent〉 〈∆WStrategy〉
With –0.14/–0.14 –0.05/–0.05

Without –0.26/–0.26 –0.05/–0.05

to use the C rule, one each at Ω1,2, Ω2,6 and Ω7,8:

Ω̂ =
{

Ω̂+, Ω̂−
}

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 1 1 0 0
0 0 0 0 3 2 1 1
0 0 2 0 1 0 0 0
0 0 0 1 1 0 0 1
0 0 0 0 1 0 2 1
0 0 0 0 0 2 2 1
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

·

(A.19)

For any number of C agents in Ω̂ thus redefined, the ana-
lytic expression for T̂ need only be modified by decompos-
ing AD(µt) accordingly. The new term in AD(µt) makes
evident the symmetry of the C rule with respect to the S
rule, and the lack of privilege of C agents. Thus:

AD (µt) =
( 8∑

r=1

{[

(1 − sgn [�sµt � �sµt ]) ◦ Ψ̂+

+ (1 + sgn [�sµt � �sµt ]) ◦ Ψ̂−
]

• â1

}

r

)

(Mod[µt−1,2m]+1)

(A.20)

with

Ψ̂+ =
1
2

(

Ω̂+ + Ω̂+T
)

; Ψ̂− =
1
2

(

Ω̂− + Ω̂−T
)

.

(A.21)
The number of undetermined agent votes remains un-
changed. In (A.11), Ω̂ need only be replaced with (Ω̂+ +
Ω̂−):

NU (µt) =
{(

1 −
[(

âT
1

)

(Mod[µt−1,4]+1)

⊗δ

(

âT
1

)

(Mod[µt−1,4]+1)

])

◦ (�sµt ⊗δ �sµt)

◦
(

Ω̂+ + Ω̂−
)}

(Mod[µt−1,2m]+1)

. (A.22)

Results for numerical simulation and analytic calculation
are in close agreement even for a single short simulation,
as illustrated in Table A.1.

The 3 C agents of 31 now perform so well that they
significantly raise the overall performance of the system
as detailed in Figure A.3. They not only outperform both
their own strategies and the other S agents on average,

Fig. A.3. Average wealth variation per time step for differ-
ent agents. White circles represent the wealth variations of the
three among the 31 agents which use counteradaptive (“C”,
choose worst) strategy selection. The usual underperformance
of agents compared to individual strategies when using stan-
dard selection rule (“S”, choose best) is shown in black.

they generate net positive gain. The hypothetical outper-
formance of unused relative to used strategies in the MG
was first observed in [14]. But the explicit generation of
positive results, by agents simply deploying their unused
strategies (without privileging), has not been tested. (In
the case of S = 2, “unused” are by definition the “worst-
performing”.)

We discuss in the manuscript and elsewhere the phe-
nomena that arise as the proportion of S and C agents are
varied for different parameters of the MG. We emphasize
here only the fact that extensive numerical studies confirm
that the phenomenon here illustrated persist over a very
wide range of parameters for the MG and quite generally
in the THMG.

A.3 The Minority Game: random agents

We provide in Figure A.4 some numerical results for a
THMG game with N agents total, NR of which em-
ploy a fully random symmetric choice. The remaining
NS = N − NR “special” agents (with NR 	 NS) will
all be one of two possible types: (i) anti-optimizing agents
with S fixed strategies that choose their worst performing
strategy to make the decision at the next step (referred to
above as counteradaptive); (ii) agents with a single fixed
strategy. We use the simplest example, that of NS = 1
(with τ = 1), to illustrate the fact that, in the THMG,
agents allowed/restricted to a fully symmetric random
choice outperform agents that attempt to optimize. (Note
that the outperformance and absolute positive returns, as-
sociated with a small proportion of anti-optimizing agents,
requires the remaining agents to optimize, as described
above. Here the small proportion of optimizing and anti-
optimizing agents compete with fully random agents.)

Appendix B: Analytic methods for the general
Parrondo effect

Consider N > 1 s-state Markov games Gi, i ∈ {1, 2,
. . ., N}, and their N s × s transition matrices, M̂(i).



J.B. Satinover and D. Sornette: “Illusion of control” in Time-Horizon Minority and Parrondo Games 383

Fig. A.4. Performance (mean change in wealth per step) of a single optimizing agent versus all other agents making a symmetric
random choice in a MG-like game. From left to right n = 11, 21, 31. S = 2, 3 m = 2, 3, 4, 5 and τ = 1. Random agents always
outperform optimizing agents. Similar results are found for other values of n, m, S and τ . Within statistical fluctuations typical
for the number of runs/random selection of strategies comprising the optimizing agent (100 runs), results for anti-optimizing
agents are identical.

For every M̂(i), denote its vector of s winning probabil-
ities conditional on each of the s-states as �p (i) = {p(i)

1 ,
p
(i)
2 , . . . p

(i)
s } and its steady-state equilibrium distribution

vector as �Π(i) = {π(i)
1 , π

(i)
2 , . . . , π

(i)
s }. For each game, the

steady-state probability of winning is therefore P
(i)
win =

�p (i) · �Π(i). Consider also a sequence of randomly alternat-
ing Gi with individual time-averaged proportion of play
γi ∈ [0, 1],

∑N
i=1 γi = 1. The transition matrix for the com-

bined sequence of games is the convex linear combination
M̂(γ1,γ2,...,γN ) ≡ ∑N

i=1 γiM̂(i) with conditional winning
probability vector �p (γ1,γ2,...,γn) =

∑n
i=1 γi�p

(i) and steady-
state probability vector �Π(γ1,γ2,...,γn) (which is a complex

nonlinear mixture of the �Π
(i)

’s). The steady-state proba-
bility of winning for the combined game is therefore

P
(γ1,γ2,...,γN )
win = �p (γ1,γ2,...,γN ) · �Π(γ1,γ2,...,γN ) (B.1)

A PE occurs whenever (and in general it is the case that)

N∑

i=1

γiP
(i)
win �= P

(γ1,γ2,...,γN )
win , i.e.,

N∑

i=1

γi�p
(i) · �Π(i)

�= �p (γ1,γ2,...,γN ) · �Π(γ1,γ2,...,γN ) (B.2)

hence the PE, or “paradox”, when the left hand sides
of (B.2) are less than zero and the right-hand sides greater.

References

1. J.D. Taylor, S.E. Brown, Psych. Bull. 103, 193 (1988)
2. A. Bandura, Self-efficacy: the exercise of control (WH

Freeman, New York, 1997)

3. E. Langer, J. Pers. Soc. Psych. 7, 185 (1975)
4. D. Challet, Y.C. Zhang, Phys. A 246, 407 (1997)
5. D. Challet, Y.C. Zhang, Phys. A 256, 514 (1998)
6. D. Challet, M. Marsili, Y.-C. Zhang, Phys. A 276, 284

(2000)
7. J.S. Doran, C. Wright, What really matters when buy-

ing and selling stocks? Working paper of Florida State
University, 2007) (http://ssrn.com/abstract=980291)

8. J.M.R. Parrondo, How to cheat a bad mathematician,
in EEC HC&M Network on Complexity and Chaos
(#ERBCHRX-CT940546) (ISI, Torino, Italy, 1996),
Unpublished

9. G.P. Harmer, D. Abbott, Stat. Sci. 14, 206 (1999)
10. W.B. Arthur, Out-of-Equilibrium Economics and Agent-

Based Modeling, in the Handbook of Computational
Economics, Vol. 2: Agent-Based Computational
Economics, edited by K. Judd, L. Tesfatsion
(Elsevier/North-Holland, 2005)

11. M. Hart, P. Jefferies, P.M. Hui, N.F. Johnson, Eur. Phys.
J. B 20, 547 (2001)

12. M.L. Hart, P. Jefferies, N.F. Johnson, Phys. A 311, 275
(2002)

13. (The mathematical derivation is given in Appendix A)
14. R. D’Hulst, G.J. Rodgers, Phys. A 270, 514 (1999)
15. Y. Li, R. Riolo, R. Savit, Phys. A 276, 265 (2000)
16. M. Andrecut, M.K. Ali, Phys. Rev. E 64, 67103 (2001)
17. R.M. Araujo, L.C. Lamb, Proceedings of the 16th

IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’04)-Volume 00, 727 (2004)

18. W.C. Man, H.F. Chau, Phys. Rev. E 73, 36106 (2006)
19. M. Sysi-Aho, A. Chakraborti, K. Kaski, Eur. Phys. J. B

34, 373 (2003)
20. M. Sysi-Aho, A. Chakraborti, K. Kaski, Phys. Rev. E 69,

36125 (2004)
21. W.S. Yang, B.H. Wang, Y.L. Wu, Y.B. Xie, Phys. A 339,

583 (2004)
22. J. Menche, J.R.L. de Almeida, It is worth thinking twice

or Improving the performance of minority games, e-print
arXiv:preprint cond-mat/0308181 (2003)



384 The European Physical Journal B

23. M. Marsili, D. Challet, Adv. Complex Systems. 3-I, 3
(2001)

24. D. Challet, M. Marsili, R. Zecchina, Phys. Rev. Lett. 84,
1824 (2000)

25. J. Duffy, E. Hopkins, Games Econ. Behav. 51, 31 (2005)
26. M. Smoluchowski, Z 13, 1069 (1912); R.P. Feynman, R.B.

Leighton, M. Sands, The Feynman lectures on physics
(Addison-Wesley Redwood City, Calif., 1963)

27. A. Adjari, J. Prost, C. R. Acad. Sci. Paris II 315, 1635
(1992); M.O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993)

28. J. Prost, J.-F. Chawin, L. Peliti, A. Adjari, Phys. Rev.
Lett. 72, 2652 (1994)

29. R. Pyke, On Random Walks and Diffusions Related
to Parrondo’s Games, e-print arXiv:math.PR/0206150

(2002)
30. D. Kinderlehrer, M. Kowalczyk, Arch. Rat. Mech. Anal.

161, 149 (2002)
31. H. Moraal, J. Phys. A 33, L203 (2000)
32. G.P. Harmer, D. Abbott, P.G. Taylor, J.M. Parrondo,

Chaos 11, 705 (2001)
33. S. Maslov, Y.C. Zhang, Int. J. Theor. Appl. Finan. 1, 377

(1998)
34. M. Boman, S.J. Johansson, D. Lyback, Parrondo strate-

gies for artificial traders, in Proceedings of the 2nd
International Conference on Intelligent Agent Technology
(World Scientific, 2001)

35. W.S. Almberg, M. Boman, in Artificial Intelligence and
Computer Science, edited by S. Shannon (Nova Science
Publishers, 2005), p. 123

36. J.B. Satinover, D. Sornette, Phys. A 386, 339 (2007)
37. J.M.R. Parrondo, G.P. Harmer, D. Abbott, Phys. Rev.

Lett. 85, 5226 (2000)
38. R.J. Kay, N.F. Johnson, Phys. Rev. E 67, 56128 (2003)
39. L. Dinis, Europhys. Lett. 63, 319 (2003)
40. J.M.R. Parrondo, L. Dinis, J. Buceta, K. Lindenberg,

Paradoxical games, ratchets, and related phenomena, In
Advances in Condensed Matter and Statistical Mechanics,
edited by E. Korutcheva, R. Cuerno (Nova Science
Publishers, 2003)

41. J. Huber, M. Kirchler, M. Sutter, Is more information
always better? Experimental financial markets with cu-
mulative information, Journal of Economic Behavior and
Organization, forthcoming (2007)

42. C.W. Eurich, K. Pawelzik, in Artificial Neural Networks:
Formal Models and Their Applications - ICANN 2005
(Springer, Berlin, 2005), p. 0302

43. S.P. Berczuk, B. Appleton, in Software Configuration
Management Patterns: Effective Teamwork, Practical
Integration (Addison-Wesley, 2002)

44. B.G. Malkiel, A Random Walk Down Wall Street:: the
Time-tested Strategy for Successful Investing (WW Norton
& Company, 2003)

45. R.J. Shiller, Market Volatility (MIT Press, 1992)
46. T. Grandin, C. Johnson, Animals in Translation: Using the

Mysteries of Autism to Decode Animal Behavior (Scribner,
2005)


